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Reader Aids —~ _

Purpose: Clarify a problem in original paper ~

Special math needed for explanations: Elementary probability
theory

Special math needed to use raults Elementary probability and
statistics

Results useful to: Failure data (error log) analysts and reliability
analysts

Abstract — The original paper used “‘traditional statistical
analysis” to demonstrate the superiority of the proposed disper-

sion frame technique. The purpose was to distinguish between tran-
sient and intermittent errors and predict the occurrence of inter-
mittent errors. Tais note shows that those traditional statistical
methods were too “traditional’’ since they involved fitting a
distribution to data which were not identically distributed. Ap-
propriate statistical techniques for fitting models to such non-
stationary data are briefly discussed, and reasons are proffered
for the persistence of ‘‘too traditional’ statistical methods in the
reliability literature,

1. INTRODUCTION

Lin & Siewiorek (1), (henceforth LS) presented heuristic
techniques for deciding if computer system problems could be
traced to faulty hardware. LS also used *‘traditional statistical
analysis methods’” (their terminology) to distinguish between
intermittent and transient errors. We show that these statistical
techniques were ‘‘too traditional’’, ie, the **standard operating
procedure’’ of fitting a distribution to data which were not iden-
tically distributed was adppted. This problem is discussed in
detail in section 2; the ‘reasons for the persistence of the
misconceptions which have led to this prevailing, but i inap-
propriate, approach are briefly discussed in section 3. Section
4 contains some brief observations concerning the LS heuristic
approach.

Standard notation is given in **Information for Readers &
Authors’’ at the rear of each issue,
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2. INAPPLICABILITY OF
“TRADITIONAL STATISTICS™

Ref [1: Introduction] considered the situation where inter-
mittent faults could be distinguished from transient faults based
largely on, ‘‘the fact that intermittent errors reoccur, often at
an increasing rate’’. More spesifically, [1: section 3.2] states,
**Periods of increasing error rare. which appear as either clusters
of errors or decreasing interarzival times between errors (sug-
gesting a Weibull failure dismibution with o > 1), are
observed.'” The situation where successive interarrival times
between errors are decreasing cannot be modeled by successive
samples from the same Weibull distribution, however, and this
can be seen most reachly when the Weibull hazard function is
increasing most rapidly.

For any Cdf, Fy(x) = Pr{X=x}, the corresponding
hazard function is:

2x(x) = Fi(x)/Fx(x)

F‘x.(x) is the survivor funcdon (complementary Cdf).

For the Weibull distribution.

2(x) = M-a-(A-x)*", and it —

decreases in x, for a<1.
is invariant in x, for a=1,
increases in x, for a>1.

Fora > > 1, zx(x) increases very rapidly as x increases, and
as q—oo, zx(x) becomes an fmpulse at 1/A [2: p 185]. If we
keep sampling from this degenerate distribution, successive
failures occur at 1/X, 2/A, 3/\. ...; ie, when the hazard func-
tion increases most rapidly, there is no tendency whatsoever
for successive interarrival times to become smaller! For finite
a, there is sampling variabilitc which can result in a sequence
of interarrival times which tend to get smaller — however, if
we keep sampling from a Weibull distribution, with fixed
parameters A and (finite) a, saxpling variability can aiso result
in a sequence of interarrival tmes which tend to become larger, "R“"
even if o> ]. The basic point is that whenever we sample from TA8

a renewal process (ie, a nonterminating sequence of i.i.d. in- ced
terarrival times) the successive mterarrival times randomly vary ="
around their common mean, witich for the Weibull distribution
is: -
on |

bility

Of course, when a—o», the mean is 1/), as anticipated, since AVeN @

failure always occurs at 1/\. I“ \ l'\b ‘
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(17A)-T(1 + 1/a).
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sient and Intermittent errors and predict the occurrence of inter-
mittent errors. This note shows that those traditional statistical
methods were too ‘‘traditional’” since they involved fitting a
distribution to data which were not identically distributed. Ap-
propriate statistical techniques for fitting models to such non-
stationary data are briefly discussed, and reasons are proffered
for the persistence of ‘‘too traditional’’ statistical methods in the
reliability literature,

1. INTRODUCTION

Lin & Siewiorek (1), (henceforth LS) presented heuristic
techniques for deciding if computer system problems could be
traced to faulty hardware. LS also used *“traditional statistical
analysis methods’’ (their terminology) to distinguish between
intermittent and transient errors. We show that these statistical
techniques were *‘too traditional'*, /e, the *‘standard operatng
procedure’” of fitting a distribution 1o data which were not iden-
tcally distributed was adopted. This problem is discussed in
detail in section 2; the reasons for the persitence of the
misconceptions which have led to this prevailing, but inap-
propriate, approach are briefly discussed in section 3. Section
4 contains some brief observations concerning the LS heuristic
approach.

Standard notation is given in **Information for Readers &
Authors'’ at the rear of each issue.
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2. INAPPLICABILITY OF
“TRADITIONAL STATISTICS"

Ref [1: Introduction] consdered the situation where inter-
mittent fauits could be distinquished from transieat faults based
largely on, *‘the fact that intermittent errors reoccur, often at
an increasing rate’’. More spesifically, [1: section 3.2] states,
*‘Periods of increasing error rar=, which appear as either clusters
of errors or decreasing interarrival times between errors (sug-
gesting 2 Weibull failure diswibution with &« > 1), are
observed.’” The situation wbere successive interarrival times
between errors are decreasing cannot be modeled by successive
samples from the same Weibuil distribution, however, and this
can be seen most readily wbea the Weibull hazard function is
increasing most rapidly.

For any Cdf, Fy(x) = Pr{X=<x}, the corresponding
hazard functon is:

2x(x) = Fi(x)/Fy(x)

?x(x) is the survivor functon (complementary Cdf).

For the Weibull distribution.

zx(x) = M-a-(A-x)*"}, and it —

decreases in x, for a<1.
is invariant in x, for a=1,
increases in x, for a> 1.

Fora > >1, zy(x) increases very rapidly as x increases, and
as a— o, zy(x) becomes an impulse at 1/A {2: p 185]. If we
keep sampling from this degeaerate distribution, successive
failures occur at 17\, 2/\, 3/ ...; ie, when the hazard func-
tion increases most rapidly, tere is no tendency whatsoever
for successive interarrival times to become smaller! For finite
a, there is sampling variability which can result in a sequence
of interarrival times which t2ad 10 get smaller — however, if
we keep sampling from a Weibull distribution, with fixed
parameters \ and (finite) a, sacpling variability can also resuit
in 2 sequence of interarrival tnes which tend to become larger,
evenif o> 1. The basic point is that whenever we sampie from
a renewal process (ie, 2 nonte=minating sequence of i.i.d. in-
terarrival times) the successive Siterarrival times randomly vary
around their common mean, wZich for the Weibull distribution
is:

(1/A)-T(1 + l/a).

Of course, when a—oe, the men is 1/), as anticipated, since
failure slways occurs at 1/
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distribution to data which were not identically distributed. Ap-
propriate statistical techniques for fitting models to such non-
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for the persistence of ‘‘too traditional’’ statistical methods in the
reliability literature.

1. INTRODUCTION

Lin & Siewiorek [1], (henceforth LS) presented heuristic
techniques for deciding if computer system problems could be
traced to faulty hardware. LS also used *‘traditional statistical
analysis methods’’ (their terminology) to distinguish between
intermittent and transient errors. We show that these statistical
techniques were ‘‘too traditional’’, ie, the **standard operating
procedure’’ of fitting a distribution to data which were not iden-
tically distributed was adppted. This problem is discussed in
detail in section 2; the reasons for the persistence of the
misconceptions which have led to this prevailing, but inap-
propriate, approach are briefly discussed in section 3. Section
4 contains some brief observations concerning the LS heuristic
approach.

Standard notation is given in ‘*Information for Readers &
Authors’’ at the rear of each issue.

2. INAPPLICABILITY OF
“TRADITIONAL STATISTICS"’

Ref [1: Introduction] considered the situation where inter-
mittent faults could be distinguished from transient faults based
largely on, “‘the fact that intermittent errors reoccur, often at
an increasing rate’’. More specifically, [1: section 3.2] states,
**Periods of increasing error ratz. which appear as either clusters
of errors or decreasing interarrival times between errors (sug-
gesting a Weibull failure diswibution with ¢ > 1), are
cbserved.” The situation where successive interarrival times
between errors are decreasing cannot be modeled by successive
samples from the same Weibull distribution, however, and this
can be seen most readily when the Weibull hazard function is
increasing most rapidly.

For any Cdf, Fx(x)
hazard function is:

= Pr{X=<x}, the corresponding

zx(x) = Fg(x)/Fx(x)

?x‘(x) is the survivor function (complementary Cdf).

For the Weibull distribution.

zx(x) = Xea-(A-x)*"!, and it —

decreases in x, for a<1.
is invariant in x, for =1,
increases in x, for a> 1.

For a > > 1, zy(x) increases very rapidly as x increases, and
as a~- o, Zy(x) becomes an impulse at 1/A [2:-p 185]. If we
keep sampling from this degenerate distribution, successive
failures occur at 1/\, 2/, 3/\. ...; ie, when the hazard func-
tion increases most rapidly, there is no tendency whatsoever
for successive interarrival times to become smaller! For finite
a, there is sampling variability which can result in a sequence
of interarrival times which tand to get smaller — however, if
we keep sampling from a Weibull distribution, with fixed
parameters A and (finite) a, sampling variability can also result
in a sequence of interarrival times which tend to become larger,
even if a> 1. The basic point is that whenever we sample from
a renewal process (ie, a nonterminating sequence of i.i.d. in-
terarrival times) the successive mterarrival times randomly vary
around their common mean, wiich for the Weibull distribution
is:

(1/X)-I'(1 + l/a).

Of course, when a— o, the mean is 1/), as anticipated, since
failure alwzys occurs at 1/\
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1. INTRODUCTION

Lin & Siewiorek [1], (henceforth LS) presented heuristic
techniques for deciding if computer system problems could be
traced to faulty hardware. LS also used *‘traditional statistical
analysis methods’’ (their terminology) to distinguish between
intermittent and transient errors. We show that these statistical
techniques were *‘too traditional’’, ie, the ‘‘standard operating
procedure’’ of fitting a distribution to data which were not iden-
tically distributed was adppted. This problem is discussed in
detail in section 2; the reasons for the persistence of the
misconceptions which have led to this prevailing, but inap-
propriate, approach are briefly discussed in section 3. Section
4 contains some brief observations concerning the LS heuristic
approach.

Standard notation is given in *‘In‘>rmation for Readers &
Authors’’ at the rear of each issue.

2. INAPPLICABILITY OF
“TRADITIONAL STATISTICS"”

Ref [1: Introduction] considered the situation where inter-
mittent faults could be distinguished from transient faults based
largely on, ‘‘the fact that intarmittent errors reoccur, often at
an increasing rate”’. More specifically, [1: section 3.2] states,
**Periods of increasing error rare, which appear as either clusters
of errors or decreasing interarrival times between errors (sug-
gesting a Weibull failure distribution with & > 1), are
observed.” The situation whers successive interarrival times
between errors are decreasing cannot be modeled by successive
samples from the same Weibull distribution, however, and this
can be seen most readily when the Weibull hazard function is
increasing most rapidly.

For any Cdf, Fy(x)
hazard function is:

= Pr{X=x}, the corresponding

2x(x) = Fy(x)/Fy(x)

?,{(x) is the survivor function (complementary Cdf).

For the Weibull distribution.

Zx(x) = hea-(Ax)*"Y, and it —

decreases in x, for a<1.
is invariant in x, for a=1,
increases in x, for a>1.

For a > > 1, zx(x) increases very rapidly as x increases, and
as a— o, zy(x) becomes an impulse at 1/A [2:-p 185]. If we
keep sampling from this degenerate distribution, successive
failures occur at 1/\, 2/, 3/\. ...; ie, when the hazard func-
tion increases most rapidly, there is no tendency whatsoever
for successive interarrival times to become smaller! For finite
a, there is sampling variability which can result in a sequence
of interarrival times which tend to get smaller — however, if
we keep sampling from a Weibull distribution, with fixed
parameters A and (finite) «t, sampling variability can also result
in a sequence of interarrival times which tend to become larger,
even if > 1. The basic point is that whenever we sample from
a renewal process (ie, a nonterminating sequence of i.i.d. in-
terarrival times) the successive terarrival times randomly vary
around their common mean, which for the Weibull distribution
is:

(1/A):T(1 + 1/a).

Of course, when a— oo, the mean is 1/A, as anticipated, since
failure always occurs at 1/
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A renewal process cannot be used to model a sequence of
interarrival times that tend to decrease, because an increasing
_hazard function is a property of one interarrival time, rather
than of a property of a sequence of interarrival times. Figure
1 portrays a sequence of interarrival times Xj, X;, X;, ... . The
figure distinguishes between local time x, which is measured
from the most recent error event, and global time ¢, which is
measured from the origin for X, regardless of the number of
error events. The rate of occurrence pf failures of a sequence
of interarrival times is:

v(n.= d E{N(n}/d1,

Notation

v(r) rate of occurrence of failures (rocof)

N(t)  observed number of failures in (0,t].

X e o—x

b X1 ;: X2 - X3 ———
o o —_—

| B— t

I

Figure 1. A Sequence of Interarrival Times

A necessary condition for modeling a decreasing sequence of
interarrival times is to use a model for which v(r) increases
in f; this is not a sufficient condition [3: pp 41-42). The
nonhomogeneous Poisson process (NHPP) [3: pp 30-33] is
presented as a suitable candidate by Thompson {4] and Rigdon
& Basu [6], and in [3: pp 47-52]. Under the special case of
a power-law process [3: p 101],

v{t) = Aea- (Ao L

successive interarrival times tend to decrease for o > 1, since
the rate of occurrence of failures is increasing. As explained
in section 3, in spite of superficial similarities between this
NHPP and the Weibull distribution, there are crucial differences
between these models.

3. REASONS FOR MISCONCEPTIONS

Ref 3 devotes 20 pages [3: pp 133-152] to tabulating &
describing chronic misconceptions about repairable systems, and
devotes 17 pages [3: pp 152-168] to reasons for these misconcep-
tions. Instead of trying to summarize this material here, only
the two chief causes iof the widespread misconception (that a
sequence of successively shorter interarrival times can be
modeled by Weibull ldistril':utions with & > 1) are presented.

1. The term ‘‘failure rate™” is almost always defined as
hy(x) but, as emphasized by Thompson (4], *‘failure rate’

then is “*naturally’’, and erroneously, interpreted as v(r).' As

explained in section 2, under the definition of ‘*failure rate”
as hy(x), there is no connection, in general, between increas-
ing ‘‘failure rate’’ and a tendency for successive interarrival

times to become shorter; unfortunately, under the incorrect in-

terpretation of *‘failure rate’’ as:

L,

v(t) = d E{N(¢)}/ds, it appears that increasing failure rate
corresponds to an increasing number of failures per unit time

.[5,6). The almost universal use of *‘failure rate’” for both ~

hy(x) & v(t) by practitioners & theonsts is the chief cause of :
the lack of understanding that there are two different bathwb *
curves: -

» hy(x) plotted against x for nonrepairable items
« v(1r) plotted against ¢ for repairable iterns (7].

2a. The NHPP with v(r) = M-a-(N-£)*"! has been
referred to as a power-law process in these comments. This
NHPP is widely and misleadingly/improperly known as a
““Weibull process’* in the literamre. There is some connection
between the so-called *“Weibull process’* and a Weibull distribu-
tion, ie, under the power-law process, time to first failure is
Weibull distributed [3: pp 160-161]; but there are major dif-
ferences between these models as well. There is just enough
connection between the two models to make it especiaily im-
portant to emphasize the major distinctions between them {3,6].
These distinctions are blurred by the misieading/improper term,
““Weibull process™".

2b. Ref{1: section 3.4] used **Weibull process’” in a very
different sense, viz, a ‘‘Weibull process’” is a renewal process
with Weibull distributed interarrival times. Since this is another
“‘natural’’ interpretation of ‘‘Weibull process’, it provides
another important reason for not using ‘*Weibull process’ as
a synonym for power law NHPP. O

In addition to problems engendered by the terms, **failure
rate’’ and ‘“Weibull process’’, there are several subtleties en-
countered when distinguishing between the analysis of times
to failure of nonrepairable items and the analysis of the interar-
rival times of a repairable system [3: pp 32-33, pp 51-52]. As
emphasized in [8], reliability-orieated mathematical statisticians
have almost ignored the discussion of these distinctions in their
papers & books and have seldom even outlined appropriate
techniques for repairable systems. As pointed out by Newton
{91, for example, ‘... it is esseatial that sequencing is taken
into account. It seems remarkable that so little attention has been
given to this major potential pitfall. Ascher & Feingold [3] com-
ment on the fact that among ths hundreds of textbooks on
reliability, only two (plus their own!) make any reference to
the need to take sequencing into account.”’ Moreover, even
when repairable systems conceprs & techniques are considered,
the treatment is often very confusing: Basu & Rigdon [10]
observed, ‘‘Much of what is wrizea on repairable systems con-
tains serious misconceptions and poor terminology. As Ascher
& Feingold [3: p 133] state, ‘... ths prevalent terminology could

n fact, Thompson defines failure rare 1s v(r) since, as he stresses, that is
the way engineers interpret the term reqardless of how it is defined. Ref (3]
stresses that statisticians aiso often have 2llen into this sermentic trap, which
they have set for engineers — and for emselves!




[

scarcely be more misieading if it had been designad to mislead-
specifically, it has engendered such deep-seated misconceptions
that it is extraordinarily difficult to supplant it ith improved
nomenclature’ **. It is not surprising, therefore. that statistical
practitioners have been led astray by *‘traditional statistical
analysis methods’"!

4. COMMENTS ON THE DISPERSION
FRAME TECHNIQUE

Ref {1: section 4] described the Dispersica Frame Tech-
nique (DFT) and illustrated its application to several types of
computer hardware. The five heuristic DFT ruiss are designed
to detect clusters of errors associated with a specific hardware
problem against the background ‘‘noise’” of ranjomly occurring
transient errors. From the LS results, the DFT usually was suc-
cessful in isolating such clusters, which associared with specific
hardware problems. We have 2 few additioml comments on
mathematical analysis of the wi'T =1 hope that they will
stimulate further research.

1. The homogeneous Poisson process (HPP) is the model
for maximum randomness of events occurring over time. As
emphasized by/ inlar {11, p 80], however. the HPP appears
(to the naive eye) to be clustered because the interarrival times
are exponentially distributed; ie, there are many more short in-
terarrival times than long ones. It would be useful, therefore,
1o use formal methods for distinguishing berween the HPP and
true clustering. Lewis [12, 13] providz techniques for
distinguishing between an HPP and true clustering, and an
NHPP vs an NHPP with additional clustering, respectively.
Lewis {12] specifically applied his techniques to computer hard-
ware problems; Jenkins {14] summarized th2 practical implica-
tions of those results.

2. Ref[1: section 4 (intro)] claimed, ‘‘These five [heuristic
DFT] rules have been shown to mathemadzally cover a range
of values for «, the Weibull shape parametzr observed during
the data analysis in section 3.”" LS did oot provide such a
mathematically oriented connection betweea the DFT rules and
appropriate values of o, but this misconcepdon should not have
been put forth in the first place. That is (s2¢ section 2 above),
LS inappropriately estimated the shape parameter of a Weibull
distribution, rather than the shape paramater of a power law
NHPP. If the NHPP is the appropriate model, then the estimate
of the **Weibull distribution shape parameter’” is meaningless.
When interarrival times are not identically distributed, it is
meaningless to estimate the nonexistent parameters of a nonex-
istent common distribution of interarrival imes. Therefore, the
conclusion stated at the ¢nd of {1: secton 3.1] that, “*a > 1
is an oversimplification for intermittent faults’’ is unwarranted.
Correspondingly, the conclusion reached near the end of [1:
section 3.2] that, **simply looking for « greater that 1 is insuf-
ficient to identify the trend of an intermiuent fault.”’ is equaily
inappropriate. Moreover, all statements in the paper that are
based on fitting Weibull distributions to interarrival times are
questionable since the fitting of a disuibution to data is ap-

ASCHER ET AL.: MODIFICATION OF: ERROR LOG ANALYSIS: STATISTICAL MODELING AND HEURISTIC TREND ANALYSIS 601

propriate only when there is no evidence that data are not iden-
tically distributed. 0

In summary, the heuristic ground rules for the DFT
established in [1: section 4] provide appropriate guidelines for
distinguishing intermittent problems from transient **glitches'’.
The resuits of [1: section 3] however, were based on **too tradi-
tional'’ statistical methods and will be revised in a future paper.
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C, and C, are constants (independent of n).

Since || — ¢° [|§ — O a.s. as n—oo and ¢ is arbitrary small,
it follows that [ £2 — {* [|¢ — O a.s. as n—oo. Hence, from
[17: coroliary 1, p 48] {, converges weakly to {. The
covariance kernel of { can be obtained by letting ¥ (4) = u
in ¢?(¥) in theorem 1.
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